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Abstract 

An approach is offered to  the problem of designing feedback optimal 
controls to  minimize the effects of parameter variations on system perform- 
ance. It is found that the optimal control can be expresged as a Linear 
function of the state. 
of trajectory sensitivity, to  systems whose controls depend explicitly only 
upon the time. 

The resulting design is quperior, from the standpoint 

The solution of an example problem is included. 
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1. Introduction 

Consider a dynamical system described by the vector differential equa- 
tion 

where x(t) is an  n-dimensional state vector, u(t) is an  m-dimensional vector 
of control variables, specified as a function of time, and ''all is a constant 
parameter. If x(a,t) is a solution of (1) for the assumed value of II a I I  , then 
the perturbed trajectory, as a result of the parameter variation Aa,  is de- 
scribed ta first order by 

- - 

T 

* 

That is, to  first order, x (a+Aa, t) is the solution of (1) with "a1' replaced 
by a+Pa. 
time. Furthermore, it can be shown that the "sensitivity variables", de- 
fined as 

-P 
It should be emphasized that both ''a'' and A a  are constant in 

1 

satisfy the differential equations 

af - af - 2 (t) = - x  ( t ) + -  * x (t ) = 0 -a ax - -a aa ' -a 0 - (3) 

where it is understood that the partial derivatives of - f a r e  evaluqted along 

- x(a, t). 

Several authors 2' have studied the system 9f equations (1, 3) with 
the purpose of determing an open-loop control - u(t) to  suppress the effects 
of a parameter variation Aa. That is, the control is designed so that 
x (t) is small, in  some sense. The methods of optimal control theory are. -a 
applied to  the problem of obtaining a control u(t) to  minimize a performance 
index involving - x(t), xJt) and - u(t). A salient feature sf a11 these treatments 
is that the control is implemented only as an explicit function of the time; 
hence the control is open loop. 

* 
All  partial derivatives appearing in  this report are assumed t o  exist. 
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The possibility of designing feedback controls u [x(t)J t ]  to  obtain desired -1 - 
sensitivity characteristics, has also been considered. In this situation, 
equations (1,3) are altered significantly because of the fact that the control 
is an explicit function of the state. The equations become 

1 x (t ) = x  -1 0 -0 (4) 

The presence of the partial derivative of the control with respect to  the state. 
in Eq. (5) has led previous authors3’ 
techniques cannot be used to determine - ulkl( t ) ,  t ]  unless its functional de- 
pendence on zl(t) is known or  assumed a priori. 
problem with respect t o  linear systems and proposes a method for approxi- 
mating au,/azcl. Dougherty, et al. ? consider nonlinear systems and suggest 
that one must impose a structural form on the control at the onset, so  that 
aul/ax can be expressed in t e rms  of control variables and state variables. 

3 Neither approach yields truly optimal solutions. 
must be content with a differential equation for Sa@) which is approximate; 
in  the second, the control is optimal only with respect t o  the class of controls 
admitted by the imposed structure. 

to the conclusion that optimal control 

3 Kriendles treats this 

-1 
In the first case, one 
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The purpose of this report is to  present a method of obtaining an opti- 
mal control for Eqs. (4) and (5). It is shown that the feedback realization 
of the optimal control is nonunique and that a control which is linear in x (t) -1 
is one admissible realization of the feedback optimal control. To illustrate 
the benefits of feedback control, an example, providing a comparison with 
an open-loop design, is presented. 

2, Definitions: Op en- Loop, Feedback, and Closed- Loop Controls 

The purpose of this section is t o  provide precise definitions for the 
familiar adjectives,- open-loop,’ feedback, and closed-loop - which apply 
to  this discussion. Although the material in  this section is well  known t o  
many readers, it is included for completeness. 

2 



Suppose an open-loop control - u(t), to 2 t 2 T, which accgmplshes some 
objective is known for  any system of equations having the form of Eqs. (1). 
Assume that a is known perfectly. With the initial conditions xo and to 
regarded a s  parameters, - u(t) can be written implicitly as 

11 1 1  - 

The term, open-loop, implies that - u(t) is suitable only for a padlcu3ar set 
of initial conditions, 

If the right-hand side of Eq, (6) is available iq cbsed form, 8 closed- 
loop control is obtained by making the change oif variables 

to- t 

and is written as 

A closed-loop control attains the desired objectives regardless of the initial 
conditions provided the actual state, - x(t), is known perfectly. This self? 
correcting property of closed-loop controls is well known and is the motivation 
for implementing t h e n  whenever possible, assuming the parameter "a" in 
Eqs. (1) is perfectly known. 

In many applications - uE0, to, t ]  in Eq. (6) i s  not available in closed f w m  
s o  that a closed-loop control cannot be derived. Such is often the case with 
solutions of optimal control problems. Now observe that given an open-loop 
control, a feedback control ~ ~ ~ [ l l ~ ,  to, - x(t) , t ]  can be defined by 

where g[ ] is any function such that - 

and xo(t) is the solution to  Eqs. (1) with _I u(t) defined by Eq. (6). Clearly, 
Eqs. (6) and (7) are special cases of Eq. (8). The feedback colrtrol as defined 

3 



here in general combines the characteristics of open-loop and closed-loop 
controls. 
It depends upon particular initial conditions but is also affected by the actual 
state, x(t). A s  an example, g[ ] might be selected so  as to  maintain 

c ont r 01. II Thus it is also referred to as a 'I 

- - 

With respect t o  these definitions, closed-loop control is usually most 
desirable for achieving an  objective, provided the parameter in Eq. (1) is 
known perfectly. 
loop) controls are most appropriate for systems in  which sensitivity vari- 
ables are included in the definition of the system state to  account for possible 
uncertainty in constant parameters. 

In the next section it is shown that feedback (semi-closed- 

In the sequel the explicit dependence 
of open-loop and feedback controls upon to and x is understood and is 
omitted in  the notation. 

-0 

3. The Effect of Feedback Controls Upon Sensitivity State Variables 

To understand the effect of feedback control upon sensitivity state 
variables, za(t), consider an open-loop optimal control problem associated 
with Eqs. (1) and (3). 

Open- Loop Optimal Control Problem 
* 

Find the optimal open-loop control - u(t) = - u (t) such that 

subject to  the constraints 

(12) 

(13) 

4 



Note that Eqs. (11) and (12), taken together, have the form of Eqs. (1). 
Hence, if - uXc(t) can be found explicitly in the form of Eq. (6), one might 
formally implement the associated closed-loop optimal control 

x(t), Ea(to)-za(t), and t .-t, How- by making the identifications - xo-- 
ever, although this is the closed-loop solution t o  the mathematical optimi- 
zation problem posed by Eqs. (1 0)- (1 3) , the state variables Ea@) defined 
by Eqs. (12) do not have the proper physical significance unless - u(t) is open- 

1 loop. Remember that Eq. (12) is derived assuming - u(t) is unaffected by a 
perturbation in  a 
and za(t), both of which change with such a perturbation,contradicts this 
assumption. 
the state, a consistent differential equation for sa must be derived. 

0 

1 1  11. the fact that the closed-loop control depends upon - x(t) 

Before the control can be permitted to  depend explicitly upon 

To demonstrate the effect of a feedback control upon - xaJ revrite Eq. 

(1) as 
- i(t) = f{lf(t)# gk(t), za(t)J t]J a, t }  ; I f @ O )  = SO (15) 

where it is assumed a priori  that - u is explicitly a differentiable function of 
x(t) and x (t). The perturbed trajectory differential equations are, to  first 
order, 

-a - 

* 
where x (t) is the perturbed value of ga(t). With the definitions -a 

P 
x (t) - g(t) q t )  

&(t) = Aa-0 A a  - aa 
- -- lim -p 

it follows by subtraction of Eq. (15) from Eq. (16) that 

af af - -  au - 
x +--  x +- a x (t ) = g  -a au - aza-aa aa a -a o 

* 2 2 Observe that asa(t)/aa $ a x(t)/aa in general because the partial derivatives in 
Eq. (16) are known only inTerms of the nominal value of lrarr,, 

5 



Now one can make two observations. First, Eq. (18) differs from Eq. 
(12) in  the presence of two t e rms  derived from the dependence of - u on - x and 
x Thus the closed-loop optimal control in  Eq. (14) produces a change in -a' 
the sensitivity dynamics, and the new system, obtained by replacing Eq. (12) 
with Eq. (18), is in general not optimized. This fact has been observed by 

3 4 Kriendler and Dougherty, et al. 

In the second place, before one can solve an optimal control problem 
with the new sensitivity equations, zaa(t) in  Eq. (18) must be known. 
te rm is caused by the dependence of - u upon za. Writing Eq. (18) symbolic- 
ally as 

This 

-a 2 = -a f [x -' -a, x -aaJ x - u@, za, t), t ]  (19) 

and repeating the limiting process, the differential equation for zaa, which 
includes the unknown term (a za(t)/aa can be derived. 
scribe this latter quantity, the third derivative of &with respect to "a" 
wi l l  appear, etc. 
there is no finite dimensional dynamic system that defines the state - x and 
its sensitivity to the parameter a unless a z,(t)/aa = - 0 for some 
is  1. To expedite the theoretical discussion this difficulty is avoided by 
requiring that - u be expressed as a function only of - x and t so the quantity 
a d a x  in Eq. (18) is zero, 
on the control. 

2 2 If we attempt to de- 

Thus, one concludes that if - u depends uponza explicitly, 

l l  I I  i i 

This imposes a semi-closed-loop structure -a 

With the objective that a feedback control of the type given by Eq. (8) 
is to  be implemented, we now examine the problem of obtaining an optimal 
feedback control. 

4. The Feedback Optimal Control Problem 

The feedback optimal control problem is initially formulated as follows: 

Problem 1 
* 

Find the optimal feedback control - u&(t), t ]  = - u &(t), t ]  such that 

6 



subject to  the constraints 

* 
where - x (t) is the solution to Eqs. (21) w 

-- u[x(t)J t]* 

Observe that t 
index, J[sJ agBx3, - 
optimization problem if u 
variables, g(t) and Kct) r 
assuming opt 
realization - -  u [x(t), t] such that 

* 

K*(t) 

Following this procedure define 

Problem 2 

Find the optimal controls - u(t) = - u (t) and K(t) = K (t) such that 
* * 

(2'5) 

(2 69 
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subject to  the constraints 

Various necessary conditions for existence of a solution to  Problem 2 

a r e  given in Reference 5. Assuming that the optimal controls exist and can 
be determined, it is readily seen from Eqs. (24) and (25) that an optimal 
feedback control law is given by any function 

There may be many functions g that satisfy these conditions; hence the 
realization of - -  u [x(t), t ]  is not unique. 
a r e  equivalent from the standpoint of the solution to  Problem 2. 
ular, it is natural to  choose a linear feedback control l a w  of the form 

- * 
However, all  admissible realizations 

In partic- 

- -  u*[x(t), t ]  = g*(t) + K*(t)k(t)  - z*(t) J (33) 

which satisfies Eqs. (30) through (32). 

In the previous section it is argued that the feedback control is not to 
depend explicitly upon x (t), thereby giving it a semi-closed loop character. -a 
This property is accentuated by the fact that - u (t) and K (t) in general de- 
pend upon xo and to. Because of the condition established by Eq. (25), it is 
an improper (and in general a nonoptiomal) procedure to  "close-the-loop" 

* * 
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with the identifications xo- x(t) and to-t. Semi-closed-loop controls 
6 have appeared in  other contexts in the control systems literature. 

- - 

It is clear that the feedback control is superior to  or at least as good 
b 

as an open-loop control because K (t) = 0 is an admissible solution t o  Prob- 
lem 2. 
problem. A comparison of these types of control is presented in  the next 
section. 

In this event, Eqs. (26)-(29) describe an  open-loop optimization 

Finally, one should recognize that a special interpret must be 

se of Problem 2 if 

* 
applied t o  Problem 2 and its solution. se - -  u [x(t), t ]  is semi-closed- 
loop in  nature, it is not the optimal control in the s 
- x(t) deviates from - x (t). However, i f  th is  deviation is caused by a pertur- 
bation in a , the "error" 

Bec 

* 
11 I t  

AS.(t) = - x(t) - z*(t) 

-a 
* * is small t o  the extent that x (t) along - x (t) is also small. 

To summarize, the main contribution of this report is recognition 
that Optimal Control Problem 1 can be formulated as Problem 2 and the 
optimal control can be realized by Eq, (33) with the properties described 
above. 

5. A Numerical Example 

There does not appear to  be a wide class of systems for which optimi- 
zation Problem 2 admits a closed form solution for the control. The numeri- 
cal solution given by Cassidy and Lee' does not appear to be applicable to  this 
formulation. 
lytical results a r e  obtainable. 

In this section we  discuss a simple special case for which ana- 

Given a dynamical system 

11 I I  where a is a parameter whose llnominall' value is taken t o  be zero, optimal 
sensitivity designs of both open-loop and closed-loop types are compared. 
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A. Open-loop Control Problem 

The dynamical system for the case where u is not explicitly a function of 
the state is 

2(t) = u(t) ; x(0) = xo (35) 

Ga(t) = 1 ; Xa(O) = 0 (36) 

* 
Find u(t) = u (t) such that 

Jl[u(t)j = 4 (x2(T) + r]xa 2 (T) + R /T u2(t)dt} 
0 

(37) 

is minimized where 77 and R a r e  positive weighting constants and T is speci- 
fied. 

We observe that xa(t) is uncontrollable; that is, it is independent of 
u(t). Thus, only Eq. (35)  and the t e rms  in Eq. (37)  dependent upon x(T) and 
u(t) need be considered in determining u (t). Applying the necessary condi- 

5 tions for  an optimal trajectory, we find that 

* 

* x O  u (t) = -- R + T  ( 3 8 )  

(39) 

* 
x (t) = t (40) a 

Equations (38)- (41) provide a comparison with the closed-loop optimal control 
derived below. 

5 the linear regulator problem, this solution is truly optimal. 
Because the portion of the problem depending upon x(t) is 

10 



B. Feedback Optimal Control Problem 

For  a feedback control the dynamical system is represented by 

i( t)  = u(t) ; x(0) = xo (42) 

ia(t) = k(t)xa(t) + 1 ; xa(0) = 0 
I * * 

We wish to  find u(t) = u (t) and k(t) = k (t) to minimize 

2 
J[u(t), k(t)] = {x2(T) + qxa(T) + R [u2(t) + pk2(t)jdt} 

(43) 

(44) 

where q, R, and p are positive weighting constants, T is specified, and no 
explicit terminal constraints are imposed. 

One finds that the necessary conditions for an optimal trajectory are 
uniquely satisfied by 

0 
R + T  

X * 
u (t) = -- (45) 

(47) 
* 

k (t) = -2y tan yt 

where is the unique solution to  

3 zy3 - cos YT s in  YT = o 
RP 

that lies in the range 

O < y T < z  7r 

(50) 

(51) 

11 



Using the linear representation of the feedback control, given by Eq. (19), 
we have 

0 X * 
u [x(t), t ]  = -(2y t any t )  (52) 

5 It can be verified by examining the Hamiltonian of this problem that this 
solution yields a local minimum of J2; global optimality has not been proved. 

Upon comparing Eqs. (38)-(41) with (45)-(51), we notice the equations * * 
for u (t) and x (t) a r e  identical in both cases. 
rable nature of the equations of motion, J1 and J2. An analytical comparison * *C * *  
of J and J2 is not available; however, it has been argued that J2 5 J1 if 1 
Eqs. (45)-(48) a r e  globally optimal. Numerical evidence that Jf 2 JT, for 
particular parameter values at least, is given in the following table: 

This is a result of the sepa- 

* 4C 

* 
Comparison of J1 with J2 for various values of T with q = R = p = x = 1. 0 

Graphs of xa(t) for both cases (Eqs. (40) and (48)) are shown in Fig. 1. 
The objective of optimal sensitivity design for this example is to  achieve a 

3 

- t '  
c 
Y 

* O  

C 

OPEN-LOOP 
- 

I 2 

Fig. 1. Comparison of xi(t)  for both open-loop and semi-closed 
loop optimal controls for T = 3, q = R = p = xo = 1. 
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low value of xa(T). 
ration is superior from this point of view. 

It is evident that the semi-closed-loop control configu- 

Summary and Conclusions 

In this report an approach to  the problem of designing feedback contr'ol 
systems with trajectory sensitivity characteristics that are opti 

available in a truly optimal design, based upon minim 
formance index, can, in  principle, be obtained, assuming 
Certain aspects of this technique remain to  be studied. W 
method is competitive with statistical techniques for dehling 
uncertainty rema to  be determined, The proper 
index to prov 
investigated. 

, is presented. The reslllts are more general than those p 

imble trajectory sensitivity characteristics should be 
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